Portafolio de Evidencias de Calculo Diferencial

En este blog, me dedicare a subir los trabajos de calculo diferencial en la carrera de mecatrónica en el grupo B del instituto tecnologico de matamoros.

Alumno: José Emanuel García Martínez
No. de control: 13260981

Maestra: Ing. Patricia Bedolla Azuara

viernes, 22 de noviembre de 2013

Regla de l'Hôpital

En matemática, más específicamente en el cálculo diferencial, la regla de l'Hôpital o regla de l'Hôpital-Bernoulli es una regla que usa derivadas para ayudar a evaluar límites de funciones que estén en forma indeterminada.

Esta regla recibe su nombre en honor al matemático francés del siglo XVII Guillaume François Antoine, marqués de l'Hôpital (1661 - 1704), quien dio a conocer la regla en su obra Analyse des infiniment petits pour l'intelligence des lignes courbes (1692), el primer texto que se ha escrito sobre cálculo diferencial, aunque actualmente se sabe que la regla se debe a Johann Bernoulli, que fue quien la desarrolló y demostró.


La regla de L'Hôpital es una consecuencia del Teorema del valor medio de Cauchy que se da sólo en el caso de las indeterminaciones del tipo  \frac{0}{0} ó \frac{\infty}{\infty} .

Sean f y g dos funciones definidas en el intervalo [a,b], y sean f(c)=g(c)=0, con c perteneciente a (a,b) y g'(x)≠0 si xc .
Si f y g son derivables en (a,b), entonces si existe el límite f'/g' en c, existe el límite de f/g (en c) y es igual al anterior. Por lo tanto,


   \lim_{x \to c}{f(x)\over g(x)} =
   \lim_{x \to c}{f'(x) \over g'(x)}

No hay comentarios.:

Publicar un comentario